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EFFECT OF PARTIAL DEPTH CRACKS ON THE
NATURAL FREQUENCY OF TWISTED BLADES:

A 3-D FINITE ELEMENT ANALYSIS
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(Received 14 May 1996, and in final form 11 February 1997)

It is possible that fatigue cracks may appear in turbomachine blades which are subjected
to extreme conditions during operation. Such cracks may become the cause of failure. The
feasibility of considering the natural frequency as a parameter for detecting full depth
cracks has been considered earlier. The present paper not only compares the result for full
depth cracks with the previous work but also presents results for partial depth cracks. It
concludes with the suggestion that the natural frequency is too poor a parameter for the
diagnosis of partial depth cracks. However, experimental verification is suggested and a
cautionary note about extrapolation of conclusions to rotating structures is also provided.
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1. INTRODUCTION

The conventional subject of fracture mechanics presupposes the presence of a crack and,
based upon this, it calculates necessary parameters such as the stress intensity factor, the
strain energy release rate, etc., in order that they may be compared with the corresponding
critical values and a decision taken as to whether the crack is propagating. Here lies the
contribution of fracture mechanics in providing better designs and estimation of their life.
However, at the same time it need be stressed that knowledge of the crack size and
geometry has to be obtained from previous experience, or from a database, for the whole
process to work.

Turbomachinery has for a long time been a technical field of practical importance. The
blade of a turbomachine is a critical component because it possesses a complicated
structural geometry (taper, stagger and non-uniform twist), a loading cycle due to fluid
pressure which is rather difficult to specify accurately, centrifugal effects due to rotation
at high speed and boundary conditions that are not that simple. All of these factors go
to make the vibrational behaviour of a rotating blade an important, serious and difficult
problem.

Subjected to such extreme conditions as mentioned above, a turbine blade is prone to
develop fatigue cracks which might not exist in a form detectable by standard NDT
techniques before its actual operation. As such, engineers of today are placing emphasis
upon diagnosing the presence of cracks. The investigations concerning the vibrational
behaviour of a cracked blade are to determine whether and in what manner a crack may
be recognized by measuring the blade vibration, in order that large consequent damage
is prevented.

The possibility of the natural frequency being considered as a criterion for damage
detection has been considered in reference [1], where the effect of a full depth crack on
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Figure 1. The 3-D brick element.

the natural frequency of a pretwisted blade has been studied. However, in practice, during
inception, a crack will only have a depth that is a fraction of the thickness of the blade.
The objective of the present work is not only to determine the natural frequency of blades
(assumed to be non-rotating) possessing partial depth cracks which may be considered
non-propagating, but also to analyze full depth cracks and compare the results with those
of reference [1].

T 1

Frequency parameters zrtv2a4/D for an uncracked square cantilevered plate of thickness
ratio 20 in various modes and for various values of pretwist

Pretwist Mesh type Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

0 10×10×1 3·452 8·330 20·741 25·965 29·758
20×20×4 3·474 8·373 21·023 26·504 30·133

Figure 2 3·485 8·405 20·949 26·330 30·108
Reference [26] 3·451 8·327 20·730 25·950 29·750

15 10×10×1 3·426 10·268 20·084 25·847 30·796
20×20×4 3·448 10·322 20·313 26·458 31·200

Figure 2 3·459 10·346 20·264 26·217 31·147
Reference [26] 3·429 10·260 20·080 25·840 30·790

30 10×10×1 3·353 14·233 18·278 25·919 33·396
20×20×4 3.373 14.313 18.412 26.556 33.878

Figure 2 3·384 14·321 18·403 26·299 33·751
Reference [26] 3·351 14·230 18·270 25·910 33·360

45 10×10×1 3.246 15.984 18.261 26.311 36.506
20×20×4 3·262 16·042 18·374 26·962 37·091

Figure 2 3·272 16·060 18·364 26·692 36·865
Reference [26] 3·243 15·970 18·250 26·290 36·470

60 10×10×1 3·119 13·762 21·619 26·755 39·272
20×20×4 3·128 13·764 21·762 27·400 39·949

Figure 2 3·138 13·797 21·730 27·119 39·621
Reference [26] 3·115 13·740 21·620 26·710 39·200
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Figure 2. The non-uniform mesh for an untwisted square cantilevered blade (blade thickness and crack width
exaggerated for clarity).

T 2

The core and labour required to solve a full depth crack of type I (relative crack length=0·5)
by using a triangular plate and a brick element

Core Labour
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV
Element No. of No. of No. of
type nodes elements eqns Max. band width Profile Time

Plate 451 800 2580 0 192 0·313122E6 R 3 m 28·45 s
U 0 m 25·41 s
S 0 m 0·03 s

Brick 2255 1600 6450 0 3471 1·833780E6 R 1 h 9 m 30·91 s
U 8 m 28·85 s
S 0 m 0·03 s

Note that these values are not the maximum possible required to solve a crack problem. For a different crack
configuration, they may be higher. They only represent the trend and are given so as to compare the two elements.

R, U and S represent real time (clock time), user time and system time, respectively, on an IBM RS 6000
mainframe system.
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2. ANALYSIS

2.1.  :  

Cracks in structures and machines produce local changes in the flexibility of the structure
and thereby alter its dynamic characteristics. Such problems have been studied by several
researchers, and reviews and literature surveys have also been reported in references [2–4].

Figure 3. Various configurations of the square cracked cantilevered blade (untwisted case only shown) with
a full and a partial depth crack. (a) Crack type I; (b) crack type II.

T 3

Frequency parameters zrtv2a4/D for a square cantilevered untwisted plate for various crack
types (full depth) and lengths in different modes

Crack type c/a Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

I and full depth 0·1 3·483 8·425 20·909 26·741 30·313
0·2 3·443 8·109 19·989 26·035 29·446
0·3 3·367 7·549 18·703 24·694 28·885
0·4 3·245 6·809 17·333 22·925 28·682
0·5 3·058 6·040 16·005 21·314 28·313

II and full depth 0·1 3·506 8·473 21·556 26·119 30·726
0·2 3·507 8·229 21·189 24·506 28·438
0·3 3·507 7·731 20·397 22·983 24·737
0·4 3·498 6·955 18·924 21·056 22·044
0·5 3·497 6·037 17·406 18·797 21·698



     37

T 4

Frequency parameters zrtv2a4/D for a square cantilevered plate (pretwist=15 and
thickness ratio=50) for various crack types ( full depth) and lengths in different modes

Crack type c/a Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

I and full depth 0·1 3·460 16·395 20·418 28·362 37·718
0·2 3·424 13·997 19·650 27·537 36·686
0·3 3·359 11·308 18·581 26·460 35·468
0·4 3·256 8·952 17·370 25·058 34·352
0·5 3·096 7·161 16·108 23·719 31·823

II and full depth 0·1 3·482 16·664 21·107 28·092 36·794
0·2 3·483 14·569 20·967 26·514 33·011
0·3 3·483 11·852 20·867 24·525 28·540
0·4 3·474 9·246 20·522 22·565 24·435
0·5 3·473 7·181 20·037 21·189 21·609

T 5

Frequency parameters zrtv2a4/D for a square cantilevered plate (pretwist=30 and
thickness ratio=50) for various crack types ( full depth) and lengths in different modes

Crack type c/a Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

I and full depth 0·1 3·391 18·710 27·048 32·728 50·601
0·2 3·361 18·107 21·020 32·156 49·487
0·3 3·310 15·265 17·338 31·268 46·342
0·4 3·230 11·169 16·354 29·599 41·473
0·5 3·106 8·383 15·279 27·361 37·610

II and full depth 0·1 3·413 19·306 27·470 33·093 47·178
0·2 3·413 19·211 21·845 31·921 40·715
0·3 3·413 15·619 19·179 30·288 35·223
0·4 3·402 11·061 18·944 28·446 30·593
0·5 3·401 8·907 18·866 26·694 27·019

T 6

Frequency parameters zrtv2a4/D for a square cantilevered plate (pretwist=45 and
thickness ratio=50) for various crack types ( full depth) and lengths in different modes

Crack type c/a Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

I and full depth 0·1 3·287 16·404 34·313 38·266 52·371
0·2 3·262 15·968 24·864 38·044 51·089
0·3 3·221 15·343 17·157 37·081 48·265
0·4 3·156 12·161 14·600 34·682 45·446
0·5 3·057 8·948 13·714 30·551 41·733

II and full depth 0·1 3·311 16·886 35·532 38·552 54·119
0·2 3·309 16·794 26·314 37·757 45·586
0·3 3·308 16·764 17·356 36·544 40·443
0·4 3·294 11·754 16·549 34·975 35·883
0·5 3·293 8·390 16·473 31·679 33·341
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T 7

Frequency parameters zrtv2a4/D for a square cantilevered plate (pretwist=60 and
thickness ratio=50) for various crack types ( full depth) and lengths in different modes

Crack type c/a Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

I and full depth 0·1 3·164 14·122 38·373 42·532 48·649
0·2 3·142 13·799 26·930 42·154 48·063
0·3 3·110 13·303 18·122 41·072 47·263
0·4 3·056 12·138 13·258 38·260 46·068
0·5 2·973 9·085 12·146 32·386 42·186

II and full depth 0·1 3·194 14·523 40·745 42·593 50·257
0·2 3·187 14·428 28·744 42·086 48·108
0·3 3·187 14·403 18·009 41·345 43·943
0·4 3·167 11·907 14·207 39·618 40·162
0·5 3·166 8·389 14·144 34·350 38·848

Figure 4. The drop in frequency for a blade with a type I crack (pretwist=0). ––, Brick and plate; mode
numbers uncircled.

Specifically, the effects of cracks on rotors have been studied in references [5–8], and on
vibrating beams in references [9–11]. A glance at the existing literature and reviews reveals
that while extensive studies have been carried out on the dynamic effects of cracks in rotors,
beams and columns, i.e., members which may be idealized as one-dimensional structural
elements, work relating to the study of similar effects on plates and shells is relatively
scarce.

The complexity of real structures prompts the requirement of the use of FEM over
classical methods. In reference [12] point finite elements are used to model a cracked beam
and in reference [13] finite elements are employed for the analysis of cracked axisymmetric
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Figure 5. The drop in frequency for a blade with a type I crack (Pretwist=15). --, Brick; ––, plate; mode
numbers uncircled.

structures subjected to torsional loading. Extensive work on the vibration and stability of
a high aspect ratio cracked blade modelled as a beam has been carried out in references
[14–16]. Furthermore, in reference [17] the dynamic stability of shaft–disc system with flaws
has been also studied. In essence, the work devoted to the use of FEM to model damaged
structures may be divided into two groups. The first group of researchers (references
[18, 19]) use the method of separation of nodes to model the crack and the degree of mesh
refinement depends on whether ordinary finite element or crack tip (quarter point)
elements are employed. The focus of interest of such papers is largely conventional fracture
mechanics. This approach has been used sparingly for the analysis of dynamic effects. The
second group of researchers use finite elements with a crack to model the damaged
structure. While in reference [20] this is used for the determination of the stress intensity
factor, in reference [21] it is used to obtain the dynamic effects.

While the first approach requires handling of a relatively large problem, the second
approach makes the element formulation considerably more complicated. An example of
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such a relatively complex formulation as applied to the in-plane vibration of a cracked
plate found in reference [22]. In the present work, we opt to follow the first approach. The
necessity of such an attempt lies in obtaining results which may not only be of considerable
practical interest but will also provide a benchmark, on the basis of which special elements
may be developed in future for three-dimensional analysis of damaged bodies.

2.2.  

2.2.1. Element selection
The eight-noded brick element with three degrees of freedom (dof) per node along with

appropriate incompatible modes, as detailed in the next section, is employed.
The legitimate question that may be asked at the present point is as follows. Why has

a 20-noded brick element not been used, even though it possesses the flexibility of using
it as a crack tip element? In this regard, the authors feel that rapid mesh refinement is an

Figure 6. The drop in frequency for a blade with a type I crack (prewist=30). Key as Figure 5.
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Figure 7. The drop in frequency for a blade with a type I crack (prewist=45). Key as Figure 5.

established alternative for modelling crack tip singularities (stress singularity) and,
in addition, since the natural frequency of a structure is largely dependent on the
boundary conditions, one needs to use a large number of nodes (and so elements) at
the crack face to model it closely. Therefore, the inherent advantage of using a crack
tip element to reduce the size of the problem (by reducing the number of nodes/elements)
does not appear to be of much benefit here.

2.2.2. Shape function and incompatible modes
The shape function of a basic linear solid element, as shown in Figure 1, is expressed

as

Ni = 1
8(12 r)(12 s)(12 t), for i=1, 8. (1)



0.5

60

Relative crack length, c/a

P
er

ce
n

ta
ge

 f
al

l o
f 

fr
eq

u
en

cy

50

40

30

20

10

0.1 0.2 0.3 0.40

V

IV

III

II

.   . 42

The displacement and co-ordinates of any point within the element are interpolated as

u= s
8

i= l

Niui . . . and x= s
8

i= l

Nixi . . . . (2)

These shape functions assure displacement continuity in the neighbouring elements.
The strain displacement matrix is expressed as

[B]
(6, 24)

= [BA]
(6, 9)

[AB]
(9, 24)

, (3)

where the elements of [BA] are elements of [J]−1 ([J] is Jacobian) properly arranged in
order that [BA] relates the strains to the derivatives of the displacement in the natural
co-ordinate system, and [AB] contains derivatives of u, v and w with respect to r, s and
t, so that it relates derivatives of u, v and w in the natural co-ordinate system to u, v and
w themselves.

The modulus matrix [D] is as usual for a 3-D solid and the stiffness matrix [K] is
(24, 24).

Figure 8. The drop in frequency for a blade with a type I crack (prewist=60). Key as Figure 5.
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Figure 9. The drop in frequency for a blade with a type II crack (prewist=0). Key as Figure 5.

Details of the element formulation are lucidly discussed in reference [23]. Since the shape
functions assume a linear variation of the displacement along each of the axes r, s and
t, the edges of the element remain straight after deformation and consequently the elements
become too stiff for bending applications.

A fairly obvious solution to the problem suggested in reference [24] is the addition of
three extra displacement modes attached to internal degrees of freedom, and so the
displacement interpolation is modified to

u= s
8

i=1

Niui + s
3

j=1

N'j aj . . . where N'1 =1− r2, N'2 =1− s2, N'3 =1− t2 (4)

and the aj are the nodeless degrees of freedom, whereas the co-ordinate interpolation
remains the same as that in equation (2).

The strain–displacement matrix now becomes

[B']= [BA'][AB']= [BA'][[ABorig ] [ABaug ]]

= [[BAorig ][ABorig ] [BAaug ][ABaug ]]= [[Borig ] [Baug ]], (5)

in which the [Borig ] is calculated as usual, whereas in the augmented [B] matrix [BAaug ] is
the same as [BAorig ], with the exception that the Jacobian matrix is calculated at the
centroid of the element (r= s= t=0) for an element of arbitrary shape, but for elements
in the shape of a paralellopiped this restriction need not be imposed. This contrivance helps
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the element to pass the patch test and has been discussed in detail in reference [25].
Furthermore, the matrix contains the additional contribution from the nodeless degree of
freedom.

The stiffness matrix (along with contribution from incompatible modes) is (33, 33), and
is expressed as

[K]=$KRR

KCR

KRC

KCC%, (6)

where [KRR ] is (24, 24) and is identical to the stiffness matrix of the ordinary eight-noded
brick element, whereas others are due to augmentation.

Figure 10. The drop in frequency for a blade with a type II crack (prewist=15). Key as Figure 5.



0.5

60

Relative crack length, c/a

P
er

ce
n

ta
ge

 f
al

l o
f 

fr
eq

u
en

cy

50

40

30

20

10

0.1 0.2 0.3 0.40

V

IV

III

II

     45

Figure 11. The drop in frequency for a blade with a type II crack (prewist=30). Key as Figure 5.

In order to reduce the order of the stiffness matrix to (24, 24), the additional degrees
of freedom are eliminated using static condensation: i.e.,

condensed [K]= [KRR ]− [KRC ][KCC ]−1[KCR ]. (7)

2.2.3. The shell model
A shell is a structure that can be derived from a flat plate by converting the middle

plane to a curved surface, and so the pretwisted plate qualifies to be called a shell. Such
a structure can be analyzed by finite elements by using either a flat plate element or
a curved shell element, or a degenerated shell element or 3-D elements. Both the
advantages and the disadvantages of using these approaches have been adequately dealt
with in the finite element literature. As far as the modelling of a crack is concerned,
the first three approaches can model only a full depth crack, while the last is capable
of accommodating a partial depth crack, and therefore is the only choice for the present
analysis.
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3. VALIDATION

3.1.   

A finite element code using the element described in section 2.2.1 has been developed.
The mass matrix used was lumped. After a skyline assembly of the element matrices, the
lowest few eigenpairs were extracted by using the Lanczos method.

To ensure the flawlessness of the code developed, the non-dimensional frequency
parameters obtained from the present code, tabulated in Table 1, were compared with
those given in reference [26]. The table shows that the results are in close agreement.

3.2.     

Two points of importance that one must consider during discretization of a given
domain into finite elements are the E/Ve ratio (where E represents Young’s modulus and
Ve is the element volume) of a pair of neighbouring elements, and the aspect ratio of an
element. According to reference [27], the E/Ve ratio for a pair of neighbouring elements
should nowhere in the domain exceed 3, whereas no such rule of thumb for aspect ratio

Figure 12. The drop in frequency for a blade with a type II crack (prewist=45). Key as Figure 5.



0.5

60

Relative crack length, c/a

P
er

ce
n

ta
ge

 f
al

l o
f 

fr
eq

u
en

cy

50

40

30

20

10

0.1 0.2 0.3 0.40

V

IV

III

II

     47

Figure 13. The drop in frequency for a blade with a type II crack (prewist=60). Key as Figure 5.

of an element is within the knowledge of the authors. As such, a numerical experimentation
was performed. Uncracked cantilevered plates were analyzed by using a 20×20
non-uniform mesh as shown in Figure 2, and the results are reported in Table 1. The
maximum E/Ve ratio for a pair of neighbouring elements in this mesh is 2, and the aspect
ratio of an element is 5. (The same non-uniform mesh was also used later to analyze the
case of type I crack with a relative crack length of 0·5, and will be discussed in the next
section.) The result obtained from such an analysis of the uncracked cantilevered plates
was very close to that obtained using the 20×20 uniform mesh. This indicates that the
discretization pattern (aspect ratio 5 and E/Ve =2) does not inject any numerical error
such that accuracy is effectively hampered.

4. CORE AND LABOUR

Although it has already been stated that the present technique requires handling of
problems of a relatively large size, to give the readers a feel of the size and time that the
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present element needs, the core and labour values while using the eight-noded 3-D brick
element have been compared with those when a three-noded triangular plate element is
used. Example data for a representative problem are given in Table 2. For other types of
problems, the values may be still higher. It needs to be further stressed that while the latter
may be run using a 386 with 8 MB RAM, the former requires a mainframe. Presently,
an IBM RS 6000 mainframe system has been used.

5. COMPARISON OF RESULTS OF PLATE WITH FULL DEPTH CRACK

A cracked cantilever with a crack oriented parallel to the length or width has been
considered. Two different configurations, as shown in Figure 3, are considered. For each
orientation, crack lengths lying between 10% and 50% of the length or width, as
applicable, and of depth ranging from 25% to 100% (full depth) of the thickness, have

T 8

Frequency parameters zrtv2a4/D for a square cantilevered untwisted plate for various crack
types (partial depth) and lengths in different modes

Crack type c/a Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

I and 0·1 3·496 8·517 21·229 26·911 30·773
relative crack 0·2 3·496 8·523 21·213 26·855 30·770
depth=0·25 0·3 3·496 8·524 21·198 26·822 30·764

0·4 3·495 8·527 21·186 26·791 30·767
0·5 3·495 8·526 21·172 26·750 30·770

I and 0·1 3·494 8·515 21·177 26·905 30·689
relative crack 0·2 3·491 8·518 21·091 26·838 30·596
depth=0·50 0·3 3·488 8·517 21·010 26·789 30·533

0·4 3·484 8·517 20·936 26·734 30·510
0·5 3·481 8·515 20·864 26·663 30·507

I and 0·1 3·491 8·513 21·099 26·898 30·566
relative crack 0·2 3·479 8·514 20·804 26·809 30·218
depth=0·75 0·3 3·464 8·510 20·461 26·717 29·957

0·4 3·448 8·508 20·120 26·598 29·835
0·5 3·431 8·503 19·790 26·456 29·807

II and 0·1 3·506 8·538 21·629 26·782 31·321
relative crack 0·2 3·507 8·540 21·531 26·744 31·207
depth=0·25 0·3 3·507 8·541 21·497 26·714 31·177

0·4 3·498 8·526 21·266 26·648 30·867
0·5 3·498 8·526 21·229 26·625 30·813

II and 0·1 3·506 8·536 21·617 26·661 31·310
relative crack 0·2 3·507 8·538 21·507 26·465 31·182
depth=0·50 0·3 3·507 8·537 21·465 26·289 31·142

0·4 3·498 8·519 21·234 26·095 30·835
0·5 3·498 8·517 21·197 25·969 30·769

II and 0·1 3·506 8·535 21·599 26·482 31·301
relative crack 0·2 3·507 8·535 21·439 25·839 31·164
depth=0·75 0·3 3·507 8·533 21·338 25·164 31·115

0·4 3·498 8·515 21·073 24·507 31·827
0·5 3·498 8·511 21·004 24·005 30·736



     49

T 9

Frequency parameters zrtv2a4/D for a square cantilevered plate (pretwist=15 and
thickness ratio=50) for various crack types (partial depth) and length in different modes

Crack type c/a Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

I and 0·1 3·471 17·469 20·709 28·829 38·134
relative crack 0·2 3·471 17·481 20·694 28·778 38·129
depth=0·25 0·3 3·471 17·480 20·679 28·743 38·125

0·4 3·470 17·486 20·663 28·720 38·128
0·5 3·470 17·481 20·649 28·678 38·129

I and 0·1 3·469 17·427 20·668 28·807 38·048
relative crack 0·2 3·467 17·427 20·585 28·751 37·971
depth=0·50 0·3 3·463 17·426 20·493 28·715 37·930

0·4 3·460 17·427 20·401 28·691 37·919
0·5 3·456 17·408 20·315 28·642 37·917

I and 0·1 3·467 17·276 20·615 28·745 37·898
relative crack 0·2 3·456 17·145 20·365 28·663 37·582
depth=0·75 0·3 3·442 17·117 20·030 28·624 37·387

0·4 3·426 17·124 19·647 28·602 37·306
0·5 3·410 17·082 19·265 28·550 37·286

II and 0·1 3·482 17·506 21·121 28·694 38·732
relative crack 0·2 3·483 17·503 21·022 28·660 38·604
depth=0·25 0·3 3·483 17·503 20·989 28·636 38·547

0·4 3·473 17·483 20·756 28·578 38·217
0·5 3·473 17·483 20·718 28·561 38·144

II and 0·1 3·482 17·473 21·119 28·585 38·665
relative crack 0·2 3·483 17·461 21·017 28·414 38·523
depth=0·50 0·3 3·483 17·460 20·985 28·264 38·437

0·4 3·473 17·438 20·751 28·098 38·074
0·5 3·473 17·434 20·713 27·992 37·983

II and 0·1 3·482 17·356 21·115 28·419 38·464
relative crack 0·2 3·483 17·251 21·006 27·849 38·279
depth=0·75 0·3 3·483 17·231 20·969 27·270 38·147

0·4 3·473 17·213 20·737 26·701 37·668
0·5 3·473 17·204 20·699 26·238 37·473

been studied. It should be noted that root cracks or centre cracks have not been considered,
because even for a full depth crack the potency of these cracks to reduce the natural
frequency is low. Furthermore, centre cracks require unusually high degrees of freedom
and probably would not be amenable to solution by in-core eigensolvers.

For the purpose of generating meshes, a simple but robust 3-D (solid) mesh generator
using an array of hexahedra and a scheme following precisely the arguments of reference
[28] has been used. The mesh has been refined towards the tip of the crack by specifying
a progressively smaller element length while approaching the crack tip in either direction.
As an illustrative example, the mesh pattern used for crack type I with relative crack length
of 0·5 has been shown in Figure 2. Along the depth-wise direction, four elements have been
taken, because this would not only permit analysis of cases with crack depths of 25%, 50%,
75% and 100% of the thickness, but also it would be preferable to use a multiple layer
of eight-noded elements to simulate the bending behaviour of shell. However, it is felt that
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a larger number of elements could have been taken, which would permit modelling of
cracks of other depths as well. However, it should be noted that this would raise the
problem size considerably, and the present discretization is probably good enough to
indicate the trend clearly.

Numerical experimentation has been performed for both an untwisted plate and plates
with pretwist angles of 15, 30, 45 and 60 degrees. The results are given in Tables 3–7. To
obtain the co-ordinates of the nodes of the pretwisted plate from those of the untwisted
plate, the condition of linear pretwist has been used.

It is preferable that one should compare the percentage fall in the natural frequency (or
the non-dimensional natural frequency parameter) reported in this paper with those
reported in reference [1], and not with the non-dimensional parameters themselves, as a
fair amount of variation is expected (between results obtained by using triangular plate
and brick elements) as reported in reference [26] (especially for higher pretwist angles and

T 10

Frequency parameters zrtv2a4/D for a square cantilevered plate (pretwist=30 and
thickness ratio=50) for various crack types (partial depth) and length in different modes

Crack type c/a Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

I and 0·1 3·401 18·932 29·431 33·603 50·879
relative crack 0·2 3·400 18·917 29·430 33·557 50·830
depth=0·25 0·3 3·400 18·904 29·421 33·512 50·811

0·4 3·399 18·888 29·427 33·489 50·799
0·5 3·398 18·874 29·412 33·445 50·795

I and 0·1 3·399 18·896 29·360 33·563 50·834
relative crack 0·2 3·396 18·820 29·339 33·514 50·751
depth=0·50 0·3 3·393 18·739 29·329 33·462 50·721

0·4 3·389 18·652 29·324 33·439 50·706
0·5 3·385 18·567 29·289 33·395 50·702

I and 0·1 3·397 18·837 29·095 33·431 50·746
relative crack 0·2 3·387 18·587 28·899 33·358 50·538
depth=0·75 0·3 3·375 18·285 28·876 33·292 50·449

0·4 3·360 17·964 28·839 33·256 50·419
0·5 3·344 17·636 28·723 33·208 50·413

II and 0·1 3·413 19·305 29·457 33·506 51·644
relative crack 0·2 3·412 19·211 29·449 33·469 51·446
depth=0·25 0·3 3·412 19·184 29·449 33·453 51·312

0·4 3·402 18·972 29·417 33·381 50·845
0·5 3·401 18·939 29·416 33·372 50·765

II and 0·1 3·413 19·305 29·392 33·434 51·489
relative crack 0·2 3·413 19·211 29·370 33·311 51·272
depth=0·50 0·3 3·412 19·184 29·369 33·218 51·076

0·4 3·402 18·969 29·335 33·080 50·552
0·5 3·401 18·932 29·329 33·014 50·450

II and 0·1 3·413 19·305 29·146 33·329 50·974
relative crack 0·2 3·413 19·211 28·957 32·979 50·680
depth=0·75 0·3 3·412 19·183 28·933 32·637 50·367

0·4 3·402 18·963 28·907 32·251 49·601
0·5 3·401 18·915 28·899 31·949 49·328
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T 11

Frequency parameters zrtv2a4/D for a square cantilevered plate (pretwist=45 and
thickness ratio=50) for various crack types (partial depth) and lengths in different modes

Crack type c/a Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

I and 0·1 3·295 16·562 38·141 38·996 52·554
relative crack 0·2 3·293 16·546 38·111 38·914 52·535
depth=0·25 0·3 3·293 16·535 38·106 38·830 52·542

0·4 3·291 16·519 38·212 38·688 52·532
0·5 3·291 16·507 38·188 38·644 52·537

I and 0·1 3·294 16·534 38·112 38·893 52·552
relative crack 0·2 3·290 16·471 38·066 38·809 52·531
depth=0·50 0·3 3·287 16·405 38·056 38·714 52·538

0·4 3·283 16·327 38·099 38·617 52·527
0·5 3·279 16·249 38·054 38·579 52·532

I and 0·1 3·292 16·487 37·927 38·595 52·547
relative crack 0·2 3·283 16·291 37·684 38·508 52·521
depth=0·75 0·3 3·273 16·053 37·640 38·410 52·526

0·4 3·259 15·778 37·460 38·457 52·515
0·5 3·243 15·485 37·322 38·424 52·519

II and 0·1 3·311 16·885 38·237 38·794 54·349
relative crack 0·2 3·308 16·794 38·223 38·739 53·694
depth=0·25 0·3 3·308 16·774 38·225 38·721 53·431

0·4 3·294 16·587 38·190 38·615 52·469
0·5 3·293 16·562 38·190 38·614 52·512

II and 0·1 3·311 16·885 38·160 38·760 54·342
relative crack 0·2 3·308 16·794 38·130 38·666 53·670
depth=0·50 0·3 3·308 16·773 38·131 38·612 53·378

0·4 3·294 16·582 38·094 38·475 52·384
0·5 3·293 16·551 38·094 38·443 52·413

II and 0·1 3·311 16·885 37·856 38·731 54·330
relative crack 0·2 3·308 16·794 37·618 38·590 53·616
depth=0·75 0·3 3·308 16·770 37·582 38·447 53·252

0·4 3·294 16·571 37·537 38·204 52·159
0·5 3·293 16·527 37·533 38·053 52·118

higher modes). As such, the percentage drop in frequency has been plotted with relative
crack length in Figures 4–13.

It is found from the graphs that the percentage falls of natural frequency by the two
methods are in excellent coherence for untwisted plates and in fair agreement for pretwist
up to 30 degrees. However, for high values of pretwist (45 and 60 degrees), differences do
exist.

6. RESULTS OF PLATE WITH PARTIAL DEPTH CRACK AND INTERPRETATION

Analysis as described in the previous section has been performed and results for various
crack depths and pretwist angles have been tabulated in Tables 8–12. On the basis of these
tables, Table 13 has been prepared for an easy and effective interpretation of results. In
Table 13 is shown the percentage drop in the natural frequency for full depth cracks
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(analyzed by solid and plate elements), as well as the same value for the largest possible
partial depth crack (relative crack length=0·5 and relative crack depth=0·75). This
clearly brings out the following points:

(1) As mentioned earlier, the coherence between the values obtained by using plate
element and brick element is quite good.

(2) For a partial depth type II crack, for all values of the pretwist angle, the maximum
drop in the natural frequency is observed in mode 4, and this value decreases as the pretwist
angle increases. For a partial depth type I crack, the maximum drop in the natural
frequency is found in mode 3 for pretwist angles of 10 and 15 degrees, whereas for higher
values it appears in mode 2.

(3) The maximum values of the percentage drop in the natural frequency for a partial

T 12

Frequency parameters zrtv2a4/D for a square cantilevered plate (pretwist=60 and
thickness ratio=50) for various crack types (partial depth) and lengths in different modes

Crack type c/a Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

I and 0·1 3·170 14·232 42·267 43·764 48·916
relative crack 0·2 3·167 14·214 42·219 43·608 48·871
depth=0·25 0·3 3·167 14·205 42·194 43·515 48·864

0·4 3·164 14·188 42·259 43·384 48·843
0·5 3·164 14·178 42·228 43·355 48·843

I and 0·1 3·169 14·212 42·254 43·659 48·899
relative crack 0·2 3·164 14·160 42·204 43·491 48·850
depth=0·50 0·3 3·162 14·107 42·161 43·398 48·844

0·4 3·157 14·037 42·179 43·293 48·824
0·5 3·154 13·969 42·137 43·263 48·824

I and 0·1 3·168 14·177 42·180 43·284 48·853
relative crack 0·2 3·159 14·027 42·108 42·983 48·781
depth=0·75 0·3 3·151 13·842 41·999 42·917 48·776

0·4 3·137 13·610 41·770 42·966 48·757
0·5 3·122 13·354 41·638 42·943 48·747

II and 0·1 3·194 14·523 42·694 43·399 50·321
relative crack 0·2 3·187 14·430 42·538 43·373 49·746
depth=0·25 0·3 3·187 14·414 42·476 43·380 49·549

0·4 3·167 14·243 42·215 48·350 48·774
0·5 3·167 14·223 42·230 43·358 48·816

II and 0·1 3·194 14·523 42·676 43·345 50·311
relative crack 0·2 3·187 14·429 42·508 43·314 49·715
depth=0·50 0·3 3·187 14·412 42·441 43·317 49·485

0·4 3·167 14·238 42·180 43·284 48·672
0·5 3·166 14·213 42·190 43·290 48·694

II and 0·1 3·194 14·523 42·628 43·154 50·295
relative crack 0·2 3·187 14·429 42·394 43·063 49·648
depth=0·75 0·3 3·187 14·409 42·310 43·059 49·333

0·4 3·167 14·227 42·060 43·004 48·401
0·5 3·166 14·190 42·053 42·996 48·342
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T 13

The percentage drop in natural frequency for a full depth crack and the largest partial depth
crack (relative crack length=0·5 and thickness ratio=0·75) for crack types I and II

Pretwist Crack type Case Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

0 I 1 1 N 7 2 3
2 12 29 25 21 8
3 12 29 25 22 9

II 1 N N 1 11 N
2 N 29 18 30 30
3 N 29 17 31 30

15 I 1 1 2 7 1 3
2 11 59 22 18 17
3 11 59 23 19 18

II 1 N 2 N 9 2
2 N 59 4 27 44
3 N 59 4 27 43

30 I 1 1 7 3 2 2
2 8 56 48 19 27
3 8 55 51 20 27

II 1 N N 2 5 4
2 N 57 36 21 47
3 N 58 41 18 46

45 I 1 1 6 3 2 N
2 7 46 64 22 21
3 6 46 66 23 21

II 1 N N 2 3 1
2 N 49 57 19 37
3 N 50 61 17 33

60 I 1 N 6 2 2 N
2 5 36 72 26 14
3 4 38 73 27 16

II 1 N N 1 2 1
2 N 41 67 21 20
3 N 42 70 20 17

Case 1 represents a partial depth crack analyzed by 3-D FE analysis.
Case 2 represents a full depth crack analyzed by 3-D FE analysis.
Case 3 represents a full depth crack analyzed by using plate elements [1].
N represents almost no change (Q1%).

depth and a full depth crack of a definite type and a specified pretwist need not necessarily
occur for the same mode.

(4) The values for the percentage drop for a full depth crack in a definite mode (for
a definite type of crack of given relative width and pretwist angle) are much higher than
those of the (largest) partial depth crack.

(5) From Tables 3–12, it can clearly be seen that, for a full depth crack, the crack width
is an important parameter controlling the natural frequency, whereas for a partial depth
crack in most of the cases, the natural frequency becomes insensitive to crack length.

It has been pointed out in reference [1] that the physical reason why cracks lower the
natural frequency is the local flexibility in the vicinity of the crack which, in turn, reduces
the overall stiffness of the structure. In the light of this statement, the inferences in points
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(4) and (5) above become obvious. It should be mentioned that although example mode
shapes are shown in reference [1], they are not illustrated here, because not only are the
changes for the partial depth cracks marginal, but also storing modal vectors of such large
size and consequent post-processing by using graphics routines is difficult.

7. CONCLUSIONS

In the present work, a cracked three-dimensional object has been modelled by using
eight-noded brick element (with incompatible modes) and the method of rapid mesh
refinement. Results for an untwisted cracked blade (with a full depth crack) have been
compared with an earlier investigation and excellent coherence has been obtained. Results
for a twisted cracked blade (full depth crack) have also been compared with the same
reference and found to be fairly satisfactory. The case of partial depth crack on blades
has been studied for both untwisted and pretwisted blades. As observed earlier, it appears
that the natural frequency is not a very attractive parameter for full depth crack diagnosis
and for partial depth cracks, the effect being almost nil in many of the cases. However,
experimental verification is suggested before drawing a final conclusion. Last but not least,
it will not be prudent to extrapolate the conclusion for rotating structures where the
stiffness (geometric) becomes dependent on the stress field, and, since the crack modifies
the stress field in the vicinity of its tip, considerable changes may be produced in the
dynamic effect.
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